Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Science ; 381(6659): eadd7564, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37590359

ABSTRACT

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Subject(s)
Embryonic Development , Yolk Sac , Female , Humans , Pregnancy , Blood Coagulation/genetics , Macrophages , Yolk Sac/cytology , Yolk Sac/metabolism , Embryonic Development/genetics , Atlases as Topic , Gene Expression , Gene Expression Profiling , Hematopoiesis/genetics , Liver/embryology
2.
Elife ; 122023 05 11.
Article in English | MEDLINE | ID: mdl-37166279

ABSTRACT

High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Mutation , Genomics , Chromosomal Instability , Organoids
3.
Cancer Discov ; 11(9): 2216-2229, 2021 09.
Article in English | MEDLINE | ID: mdl-33741711

ABSTRACT

ZFTA (C11orf95)-a gene of unknown function-partners with a variety of transcriptional coactivators in translocations that drive supratentorial ependymoma, a frequently lethal brain tumor. Understanding the function of ZFTA is key to developing therapies that inhibit these fusion proteins. Here, using a combination of transcriptomics, chromatin immunoprecipitation sequencing, and proteomics, we interrogated a series of deletion-mutant genes to identify a tripartite transformation mechanism of ZFTA-containing fusions, including: spontaneous nuclear translocation, extensive chromatin binding, and SWI/SNF, SAGA, and NuA4/Tip60 HAT chromatin modifier complex recruitment. Thereby, ZFTA tethers fusion proteins across the genome, modifying chromatin to an active state and enabling its partner transcriptional coactivators to promote promiscuous expression of a transforming transcriptome. Using mouse models, we validate further those elements of ZFTA-fusion proteins that are critical for transformation-including ZFTA zinc fingers and partner gene transactivation domains-thereby unmasking vulnerabilities for therapeutic targeting. SIGNIFICANCE: Ependymomas are hard-to-treat brain tumors driven by translocations between ZFTA and a variety of transcriptional coactivators. We dissect the transforming mechanism of these fusion proteins and identify protein domains indispensable for tumorigenesis, thereby providing insights into the molecular basis of ependymoma tumorigenesis and vulnerabilities for therapeutic targeting.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
Cell Transformation, Neoplastic , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Ependymoma/genetics , Supratentorial Neoplasms/genetics , Transcription Factors/genetics , Translocation, Genetic , Animals , Mice
4.
Sci Transl Med ; 10(454)2018 08 15.
Article in English | MEDLINE | ID: mdl-30111643

ABSTRACT

Pharmacological inhibition of uncontrolled cell growth with small-molecule inhibitors is a potential strategy for treating glioblastoma multiforme (GBM), the most malignant primary brain cancer. We showed that the synthetic small-molecule KHS101 promoted tumor cell death in diverse GBM cell models, independent of their tumor subtype, and without affecting the viability of noncancerous brain cell lines. KHS101 exerted cytotoxic effects by disrupting the mitochondrial chaperone heat shock protein family D member 1 (HSPD1). In GBM cells, KHS101 promoted aggregation of proteins regulating mitochondrial integrity and energy metabolism. Mitochondrial bioenergetic capacity and glycolytic activity were selectively impaired in KHS101-treated GBM cells. In two intracranial patient-derived xenograft tumor models in mice, systemic administration of KHS101 reduced tumor growth and increased survival without discernible side effects. These findings suggest that targeting of HSPD1-dependent metabolic pathways might be an effective strategy for treating GBM.


Subject(s)
Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Energy Metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Thiazoles/pharmacology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Chaperonin 60/metabolism , Citric Acid Cycle/drug effects , Disease Models, Animal , Energy Metabolism/drug effects , Glioblastoma/genetics , Glycolysis/drug effects , Humans , Metabolic Networks and Pathways/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Neoplasm Invasiveness , Stress, Physiological/drug effects , Survival Analysis , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays
5.
BMC Syst Biol ; 12(1): 60, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29843806

ABSTRACT

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.


Subject(s)
Disease/genetics , Systems Biology/methods , Biomarkers/metabolism , Cluster Analysis , False Positive Reactions , Machine Learning , Quality Control
6.
Lancet Respir Med ; 6(5): 379-388, 2018 05.
Article in English | MEDLINE | ID: mdl-29496485

ABSTRACT

BACKGROUND: DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS: We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS: 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION: Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING: EU and the Seventh Framework Programme (the MeDALL project).


Subject(s)
Asthma/genetics , CpG Islands , DNA Methylation , Eosinophils/immunology , Epigenesis, Genetic , Asthma/blood , Child , Child, Preschool , DNA/blood , Female , Genome-Wide Association Study , Humans , Male , T-Lymphocytes, Cytotoxic
7.
Environ Health Perspect ; 125(6): 067007, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28669936

ABSTRACT

BACKGROUND: Long-term exposure to ambient air pollution can lead to adverse health effects in children; however, underlying biological mechanisms are not fully understood. OBJECTIVES: We evaluated the effect of air pollution exposure during different time periods on mRNA expression as well as circulating levels of inflammatory cytokines in children. METHODS: We measured a panel of 10 inflammatory markers in peripheral blood samples from 670 8-y-old children in the Barn/Child, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) birth cohort. Outdoor concentrations of nitrogen dioxide (NO2) and particulate matter (PM) with aerodynamic diameter <10 µm (PM10) from road traffic were estimated for residential, daycare, and school addresses using dispersion modeling. Time-weighted average exposures during infancy and at biosampling were linked to serum cytokine levels using linear regression analysis. Furthermore, gene expression data from 16-year-olds in BAMSE (n=238) were used to evaluate links between air pollution exposure and expression of genes coding for the studied inflammatory markers. RESULTS: A 10 µg/m3 increase of NO2 exposure during infancy was associated with a 13.6% (95% confidence interval (CI): 0.8; 28.1%) increase in interleukin-6 (IL-6) levels, as well as with a 27.8% (95% CI: 4.6, 56.2%) increase in IL-10 levels, the latter limited to children with asthma. However, no clear associations were observed for current exposure. Results were similar using PM10, which showed a high correlation with NO2. The functional analysis identified several differentially expressed genes in response to air pollution exposure during infancy, including IL10, IL13, and TNF;. CONCLUSION: Our results indicate alterations in systemic inflammatory markers in 8-y-old children in relation to early-life exposure to traffic-related air pollution. https://doi.org/10.1289/EHP460.


Subject(s)
Air Pollution/statistics & numerical data , Cytokines/blood , Environmental Exposure/statistics & numerical data , Vehicle Emissions/analysis , Biomarkers/blood , Child , Gene Expression , Humans , Hypersensitivity , Interleukin-10/blood , Interleukin-6/blood , Nitrogen Dioxide/analysis , Particulate Matter/analysis
8.
PLoS One ; 12(6): e0179125, 2017.
Article in English | MEDLINE | ID: mdl-28598986

ABSTRACT

BACKGROUND: The mechanisms explaining the co-existence of asthma, eczema and rhinitis (allergic multimorbidity) are largely unknown. We investigated the mechanisms underlying multimorbidity between three main allergic diseases at a molecular level by identifying the proteins and cellular processes that are common to them. METHODS: An in silico study based on computational analysis of the topology of the protein interaction network was performed in order to characterize the molecular mechanisms of multimorbidity of asthma, eczema and rhinitis. As a first step, proteins associated to either disease were identified using data mining approaches, and their overlap was calculated. Secondly, a functional interaction network was built, allowing to identify cellular pathways involved in allergic multimorbidity. Finally, a network-based algorithm generated a ranked list of newly predicted multimorbidity-associated proteins. RESULTS: Asthma, eczema and rhinitis shared a larger number of associated proteins than expected by chance, and their associated proteins exhibited a significant degree of interconnectedness in the interaction network. There were 15 pathways involved in the multimorbidity of asthma, eczema and rhinitis, including IL4 signaling and GATA3-related pathways. A number of proteins potentially associated to these multimorbidity processes were also obtained. CONCLUSIONS: These results strongly support the existence of an allergic multimorbidity cluster between asthma, eczema and rhinitis, and suggest that type 2 signaling pathways represent a relevant multimorbidity mechanism of allergic diseases. Furthermore, we identified new candidates contributing to multimorbidity that may assist in identifying new targets for multimorbid allergic diseases.


Subject(s)
Asthma/epidemiology , Rhinitis, Allergic/epidemiology , Rhinitis/epidemiology , Asthma/etiology , Asthma/metabolism , Biomarkers , Comorbidity , Computer Simulation , Databases, Factual , Female , Gene Expression Regulation , Humans , Male , Models, Statistical , Models, Theoretical , Proteome , Proteomics/methods , Rhinitis/etiology , Rhinitis/metabolism , Rhinitis, Allergic/etiology , Rhinitis, Allergic/metabolism , Signal Transduction
9.
J Allergy Clin Immunol ; 139(2): 388-399, 2017 02.
Article in English | MEDLINE | ID: mdl-28183433

ABSTRACT

Asthma, rhinitis, and eczema are complex diseases with multiple genetic and environmental factors interlinked through IgE-associated and non-IgE-associated mechanisms. Mechanisms of the Development of ALLergy (MeDALL; EU FP7-CP-IP; project no: 261357; 2010-2015) studied the complex links of allergic diseases at the clinical and mechanistic levels by linking epidemiologic, clinical, and mechanistic research, including in vivo and in vitro models. MeDALL integrated 14 European birth cohorts, including 44,010 participants and 160 cohort follow-ups between pregnancy and age 20 years. Thirteen thousand children were prospectively followed after puberty by using a newly standardized MeDALL Core Questionnaire. A microarray developed for allergen molecules with increased IgE sensitivity was obtained for 3,292 children. Estimates of air pollution exposure from previous studies were available for 10,000 children. Omics data included those from historical genome-wide association studies (23,000 children) and DNA methylation (2,173), targeted multiplex biomarker (1,427), and transcriptomic (723) studies. Using classical epidemiology and machine-learning methods in 16,147 children aged 4 years and 11,080 children aged 8 years, MeDALL showed the multimorbidity of eczema, rhinitis, and asthma and estimated that only 38% of multimorbidity was attributable to IgE sensitization. MeDALL has proposed a new vision of multimorbidity independent of IgE sensitization, and has shown that monosensitization and polysensitization represent 2 distinct phenotypes. The translational component of MeDALL is shown by the identification of a novel allergic phenotype characterized by polysensitization and multimorbidity, which is associated with the frequency, persistence, and severity of allergic symptoms. The results of MeDALL will help integrate personalized, predictive, preventative, and participatory approaches in allergic diseases.


Subject(s)
Allergens/immunology , Hypersensitivity/immunology , Adolescent , Animals , Child , Cohort Studies , Comorbidity , Europe/epidemiology , Female , Gene Expression Profiling , Genome-Wide Association Study , Humans , Hypersensitivity/epidemiology , Hypersensitivity/genetics , Immunization , Immunoglobulin E/metabolism , Phenotype , Translational Research, Biomedical , Young Adult
10.
Eur J Hum Genet ; 25(4): 485-492, 2017 04.
Article in English | MEDLINE | ID: mdl-28120839

ABSTRACT

Human genetic diversity in Europe has been extensively studied using uniparentally inherited sequences (mitochondrial DNA (mtDNA) and the Y chromosome), which reveal very different patterns indicating sex-specific demographic histories. The X chromosome, haploid in males and inherited twice as often from mothers as from fathers, could provide insights into past female behaviours, but has not been extensively investigated. Here, we use HapMap single-nucleotide polymorphism data to identify genome-wide segments of the X chromosome in which recombination is historically absent and mutations are likely to be the only source of genetic variation, referring to these as phylogeographically informative haplotypes on autosomes and X chromosome (PHAXs). Three such sequences on the X chromosome spanning a total of ~49 kb were resequenced in 240 males from Europe, the Middle East and Africa at an average coverage of 181 ×. These PHAXs were confirmed to be essentially non-recombining across European samples. All three loci show highly homogeneous patterns across Europe and are highly differentiated from the African sample. Star-like structures of European-specific haplotypes in median-joining networks indicate past population expansions. Bayesian skyline plots and time-to-most-recent-common-ancestor estimates suggest expansions pre-dating the Neolithic transition, a finding that is more compatible with data on mtDNA than the Y chromosome, and with the female bias of X-chromosomal inheritance. This study demonstrates the potential of the use of X-chromosomal haplotype blocks, and the utility of the accurate ascertainment of rare variants for inferring human demographic history.


Subject(s)
Chromosomes, Human, X/genetics , Polymorphism, Genetic , Population/genetics , Europe , Female , Haplotypes , Homologous Recombination , Human Migration , Humans , Male , Mutation , Pedigree
11.
Environ Health Perspect ; 125(1): 104-110, 2017 01.
Article in English | MEDLINE | ID: mdl-27448387

ABSTRACT

BACKGROUND: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. OBJECTIVES: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as marker, and epigenome-wide cord blood DNA methylation. METHODS: We meta-analyzed the associations between NO2 exposure at residential addresses during pregnancy and cord blood DNA methylation (Illumina 450K) in four European and North American studies (n = 1,508) with subsequent look-up analyses in children ages 4 (n = 733) and 8 (n = 786) years. Additionally, we applied a literature-based candidate approach for antioxidant and anti-inflammatory genes. To assess influence of exposure at the transcriptomics level, we related mRNA expression in blood cells to NO2 exposure in 4- (n = 111) and 16-year-olds (n = 239). RESULTS: We found epigenome-wide significant associations [false discovery rate (FDR) p < 0.05] between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochondria-related genes: cg12283362 (LONP1), cg24172570 (3.8 kbp upstream of HIBADH), and cg08973675 (SLC25A28). The associations with cg08973675 methylation were also significant in the older children. Further analysis of antioxidant and anti-inflammatory genes revealed differentially methylated CpGs in CAT and TPO in newborns (FDR p < 0.05). NO2 exposure at the time of biosampling in childhood had a significant impact on CAT and TPO expression. CONCLUSIONS: NO2 exposure during pregnancy was associated with differential offspring DNA methylation in mitochondria-related genes. Exposure to NO2 was also linked to differential methylation as well as expression of genes involved in antioxidant defense pathways. Citation: Gruzieva O, Xu CJ, Breton CV, Annesi-Maesano I, Antó JM, Auffray C, Ballereau S, Bellander T, Bousquet J, Bustamante M, Charles MA, de Kluizenaar Y, den Dekker HT, Duijts L, Felix JF, Gehring U, Guxens M, Jaddoe VV, Jankipersadsing SA, Merid SK, Kere J, Kumar A, Lemonnier N, Lepeule J, Nystad W, Page CM, Panasevich S, Postma D, Slama R, Sunyer J, Söderhäll C, Yao J, London SJ, Pershagen G, Koppelman GH, Melén E. 2017. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect 125:104-110; http://dx.doi.org/10.1289/EHP36.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , DNA Methylation , Maternal Exposure/statistics & numerical data , Nitrogen Dioxide/analysis , Prenatal Exposure Delayed Effects/epidemiology , Child , Female , Humans , Infant, Newborn , London , Pregnancy
12.
Am J Respir Crit Care Med ; 195(10): 1373-1383, 2017 05 15.
Article in English | MEDLINE | ID: mdl-27901618

ABSTRACT

RATIONALE: The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. OBJECTIVES: To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. METHODS: We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. MEASUREMENTS AND MAIN RESULTS: In the European cohorts, 186 SNPs had an interaction P < 1 × 10-4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an interaction P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the interaction effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10-4). One other SNP with P < 0.05 for interaction in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc ß-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10-17). Air pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. CONCLUSIONS: Our results indicated that gene-environment interactions are important for asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.


Subject(s)
Air Pollution/statistics & numerical data , Asthma/epidemiology , Gene-Environment Interaction , Vehicle Emissions , Asthma/genetics , Child , Europe/epidemiology , Female , Follow-Up Studies , Humans , Male , North America/epidemiology , Polymorphism, Single Nucleotide
13.
Methods Mol Biol ; 1386: 43-60, 2016.
Article in English | MEDLINE | ID: mdl-26677178

ABSTRACT

Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.


Subject(s)
Medicine , Systems Biology , Delivery of Health Care/methods , Delivery of Health Care/trends , Genomics/methods , Genomics/trends , Health , Humans , Informatics/methods , Informatics/trends , Medicine/methods , Medicine/trends , Systems Biology/methods , Systems Biology/trends , Translational Research, Biomedical
14.
Int Arch Allergy Immunol ; 167(1): 57-64, 2015.
Article in English | MEDLINE | ID: mdl-26184344

ABSTRACT

Allergic diseases and asthma are increasing in prevalence globally. They can start early in life and many persist. It is important to prevent, detect and control these diseases early on and throughout life, so as to promote active and healthy ageing. The translational activities of MeDALL (Mechanisms of the Development of Allergy; EU FP7) are of great importance and include the deployment of successful allergy programmes. The Finnish Allergy Plan is a prototype for the prevention and control of severe allergic diseases. It has been considered for deployment to Norway by the Ministry of Health and Care Services in the frame of AIRWAYS ICPs (Integrated Care Pathways for Airway Diseases), a programme of Action Plan B3 of the EIP on AHA (European Innovation Partnership on Active and Healthy Ageing). Deployment of the Finnish and Norwegian Plans will make use of the scaling-up strategy of the EIP on AHA in regions in the European Union, and the WHO GARD (Global Alliance against Chronic Respiratory Diseases) globally. The regional deployment in Norway serves as a model of a national plan for the use of the EIP on AHA scaling-up strategy in other regions.


Subject(s)
Asthma , Chronic Disease/epidemiology , Health Policy/legislation & jurisprudence , Asthma/epidemiology , Asthma/prevention & control , Asthma/therapy , European Union , Humans , Norway/epidemiology
15.
PLoS Genet ; 9(7): e1003666, 2013.
Article in English | MEDLINE | ID: mdl-23935520

ABSTRACT

The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages.


Subject(s)
Chromosomes, Human, Y/genetics , Evolution, Molecular , Gene Conversion , Recombination, Genetic , Animals , Chromosome Inversion , Gorilla gorilla/genetics , Humans , Inverted Repeat Sequences/genetics , Male , Pan troglodytes/genetics , Phylogeny
16.
Eur Respir J ; 42(3): 802-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23397306

ABSTRACT

Inflammatory lung diseases are highly complex in respect of pathogenesis and relationships between inflammation, clinical disease and response to treatment. Sophisticated large-scale analytical methods to quantify gene expression (transcriptomics), proteins (proteomics), lipids (lipidomics) and metabolites (metabolomics) in the lungs, blood and urine are now available to identify biomarkers that define disease in terms of combined clinical, physiological and patho-biological abnormalities. The aspiration is that these approaches will improve diagnosis, i.e. define pathological phenotypes, and facilitate the monitoring of disease and therapy, and also, unravel underlying molecular pathways. Biomarker studies can either select predefined biomarker(s) measured by specific methods or apply an "unbiased" approach involving detection platforms that are indiscriminate in focus. This article reviews the technologies presently available to study biomarkers of lung disease within the 'omics field. The contributions of the individual 'omics analytical platforms to the field of respiratory diseases are summarised, with the goal of providing background on their respective abilities to contribute to systems medicine-based studies of lung disease.


Subject(s)
Biomarkers/metabolism , Lung Diseases/metabolism , Breath Tests/methods , Bronchoalveolar Lavage Fluid/chemistry , Chromatography, Liquid , Gene Expression Profiling/methods , Humans , Inflammation , Lipid Metabolism , Lung Diseases/genetics , Lung Diseases/immunology , Mass Spectrometry/methods , Metabolomics/methods , Phenotype , Pneumonia/genetics , Pneumonia/metabolism , Proteomics/methods , Sputum/chemistry
17.
Gut ; 62(6): 871-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22490517

ABSTRACT

OBJECTIVE: Colorectal cancer (CRC) has a substantial heritable component. Common genetic variation has been shown to contribute to CRC risk. A study was conducted in a large multi-population study to assess the feasibility of CRC risk prediction using common genetic variant data combined with other risk factors. A risk prediction model was built and applied to the Scottish population using available data. DESIGN: Nine populations of European descent were studied to develop and validate CRC risk prediction models. Binary logistic regression was used to assess the combined effect of age, gender, family history (FH) and genotypes at 10 susceptibility loci that individually only modestly influence CRC risk. Risk models were generated from case-control data incorporating genotypes alone (n=39,266) and in combination with gender, age and FH (n=11,324). Model discriminatory performance was assessed using 10-fold internal cross-validation and externally using 4187 independent samples. The 10-year absolute risk was estimated by modelling genotype and FH with age- and gender-specific population risks. RESULTS: The median number of risk alleles was greater in cases than controls (10 vs 9, p<2.2 × 10(-16)), confirmed in external validation sets (Sweden p=1.2 × 10(-6), Finland p=2 × 10(-5)). The mean per-allele increase in risk was 9% (OR 1.09; 95% CI 1.05 to 1.13). Discriminative performance was poor across the risk spectrum (area under curve for genotypes alone 0.57; area under curve for genotype/age/gender/FH 0.59). However, modelling genotype data, FH, age and gender with Scottish population data shows the practicalities of identifying a subgroup with >5% predicted 10-year absolute risk. CONCLUSION: Genotype data provide additional information that complements age, gender and FH as risk factors, but individualised genetic risk prediction is not currently feasible. Nonetheless, the modelling exercise suggests public health potential since it is possible to stratify the population into CRC risk categories, thereby informing targeted prevention and surveillance.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Alleles , Case-Control Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/ethnology , Feasibility Studies , Female , Genotype , Humans , Logistic Models , Male , Risk Assessment , Risk Factors , Scotland/epidemiology
18.
Nat Genet ; 44(7): 770-6, 2012 May 27.
Article in English | MEDLINE | ID: mdl-22634755

ABSTRACT

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10(-10)), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10(-10)) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10(-10)) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.


Subject(s)
Colorectal Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Polymerase III/genetics , Membrane Proteins/genetics , Case-Control Studies , Genetic Loci , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study/methods , Humans
19.
PLoS Genet ; 7(6): e1002105, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21655089

ABSTRACT

Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.


Subject(s)
Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 4/genetics , Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Intercellular Signaling Peptides and Proteins/genetics , Aged , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 4/metabolism , Case-Control Studies , Colorectal Neoplasms/metabolism , Gene Frequency , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Signal Transduction
20.
Am J Hum Genet ; 83(6): 725-36, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19061982

ABSTRACT

Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics-North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement-more marked in some regions than in others-plus the effects of genetic drift.


Subject(s)
Christianity , Ethnicity/genetics , Islam , Jews , Population Groups , Chromosomes, Human, Y/genetics , Demography , Emigration and Immigration , Genetic Markers , Haplotypes , Humans , Male , Phylogeny , Population Groups/genetics , Portugal , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...